通过教案,我们可以培养学生的问题解决能力,通过教案,我们能够更好地组织课程内容和活动,下面是好文笔小编为您分享的百分数的应用二教案8篇,感谢您的参阅。
百分数的应用二教案篇1
在六年级(上册)认识百分数里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。
1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。
解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让学生思考实际造林比原计划多百分之几应该怎样理解。明确这个问题是求实际造林面积超过原计划的公顷数相当于计划造林公顷数的百分之几,从而产生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位1(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的部分是原计划的百分之几。练习一第1题利用已知的是百分之几求增长百分之几,或者利用已知的增加百分之几求是百分之几,通过百分数之间的相互转化,进一步理解增加百分之几的含义,还带出了下降百分之几这个概念。
实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写试一试的目的就是要突出这些不同,要求教师在适当的时候组织学生将试一试和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使学生更正确地理解是百分之几与高百分之几的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式呈现求百分数的问题,首次把百分数应用于统计表中。
2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。
例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题60万元的5%是多少,然后把求一个数的几分之几是多少的经验迁移过来,得到求一个数的百分之几是多少,也用乘法计算,于是列出算式605%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,学生就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算605%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在练一练里,由于6.25/100的计算比6.20.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。
练习二第1~4题是配合例2编排的,要引导学生抓住求什么的百分之几是多少进行思考。如,第1题是求门票收入的3%,因此接待游客18万人次是多余的信息。又如,第4题是求月收入超过1600元的部分的百分之几是多少,因此要先算出应纳税部分的元数,并找到相应的税率。
例3计算利息,应用求一个数的百分之几的方法解决稍复杂的实际问题。由于多数学生缺少这方面的生活经验,因此教材在底注中解释了本金、利息、利率的含义,并给出了计算利息的方法:利息=本金利率时间。要结合例题里的表格,让学生知道利息和本金、年利率、存期有关,一般情况下,本金越多,存期越长,年利率越高,到期后获得的利息就多。还要让学生知道,存期一年,到期可得的利息是本金的2.25%;存期二年,每年的利息是本金的2.70%这样,学生就能理解计算利息公式里的数量关系。
试一试利用例3求得的应得利息,继续计算缴纳利息税以后的实得利息。要让学生懂得实得利息是应得利息扣除缴纳的利息税以后剩下的利息,明白为什么先算出利息税是多少元的道理。从例题到试一试的全过程,就是我国现行的银行存款实得利息的计算方法:先根据本金、存期和利率算出应得利息,再扣除缴纳的利息税得到实得利息。学生完成练一练和练习二第5~7题就有思路了。要注意的是,计算实得利息的步骤比较多,练一练和第6、7题都采用连续提问的形式,适当降低了解题时的思维难度。
3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。
例4教学与折扣有关的问题,也是百分数的实际应用。教材先对打折作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。原价和实际售价有什么关系是这道例题的教学重点,要从原价打八折出售得出原价80%=实际售价。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求《趣味数学》原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。求出《趣味数学》的原价15元以后,对学生提出检验的要求,而且采用了两种检验方法。依据折扣的含义,既可以用实际售价除以原价,看是不是打了八折;也可以看原价的80%是不是实际售价12元。这样安排,不仅检验了原价15元是正确的,还多角度表现了原价、实际售价、折扣三者的关系,在进一步理解折扣的同时,沟通了三种简单的百分数问题的联系。练一练求《成语故事》的原价,也要求检验,让学生独立经历与例4同样的学习过程,再次体会问题中的数量关系。
练习三的编排大致分成两段,第1~4题是第一段,在理解折扣含义的基础上正确应用数量关系。第1、2题分别求打折后的实际售价与打折前的原价,都可以根据原价折扣=实际售价来解答。第4题求折扣,教材先让学生回答第3题,把按原价的百分之几出售改说成打几折出售,体会求几折只要求百分之几,为第4题作了铺垫。第5~9题是第二段,仍然以求实际售价或求原价为主要内容,灵活应用数量关系。第5题分别求实际售价与实际比原来便宜的元数,这里有简单问题与稍复杂问题的比较。第6题分别求实际售价与原价,是两种折扣问题的比较。第7、8题让购物问题更复杂一些,有利于学生在变化的问题情境中把握基本的数量关系。
例5和例6是较复杂的已知一个数的百分之几是多少,求这个数的问题,都列方程解答。两道例题分别把相并关系和相差关系作为列方程的相等关系,虽然相并与相差是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5的线段图右边的括号里填36,体会男生人数与女生人数合起来是美术组的总人数。例6在线段图上突出十月份比九月份节约用水的那一段,引导学生注意两个月用水量之间的相差关系。教材完整地写出两道题的等量关系,让学生感受等量关系式右边美术组的总人数、十月份用水的吨数都已知,在这样的情况下,列方程是解题的`有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x,设九月份的用水量为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位1的数量,还很容易用含有字母的式子表示出女生人数,表示出十月份比九月份节约用水的吨数。
两道例题列出的方程里都有两个x,还含有百分数,解方程时要先化简方程的左边,再应用等式的性质。例题呈现了解方程的过程,并在练习四里安排三道解方程的习题,提醒教师要帮助学生正确地解方程。检验不是把未知数的值代入方程,而是要检验得数是否符合实际问题里的数量关系。具体地说,例5要检验男、女生的人数之和是不是36,还要检验女生人数是不是男生的80%。例6要检验十月份用水的吨数是不是比九月份节约20%,或者检验九月份的用水量节约20%,是不是440立方米。只有符合实际问题的得数才是正确答案。
练一练要先说数量关系再解答,突出寻找等量关系是解答这些题的关键,也是指向解题难点的基础训练。要引导学生从分析题目里已知的那个百分数开始,有条理地思考。如第11页练一练,种蓖麻的棵数是向日葵的75%,向日葵的棵数是单位1的量,蓖麻的棵数是单位1的75%,它们一共有147棵,等量关系就是蓖麻的棵数+向日葵的棵数=147;向日葵比蓖麻多21棵,等量关系就是向日葵的棵数-蓖麻的棵数=21。再如第12页练一练,美术组的人数比舞蹈组多20%,舞蹈组的人数是单位1的量,美术组比舞蹈组多的人数是单位1的20%,等量关系是舞蹈组的人数+美术组比舞蹈组多的人数=美术组的人数。解答练习四里的实际问题,也应经常让学生说说数量关系。
练习四第1~4题配合例5编排,第4题第(1)题曾经在六年级(上册)教过,那时也是列方程解答的,从第(1)题到第(2)题带出了稍复杂的分数问题。整数、分数、百分数都能表示两个数量间的倍数关系,第4题把貌似不同的问题组织在一起,凸现这些问题在本质上的联系。第5~9题是配合例6编排的,在第9题里把简单的百分数问题和较复杂的百分数问题编排在一起,可以适当进行比较。第10~16题是一堂练习课的内容,第11~13题是百分数的问题,进一步熟悉两道例题的解题思路,第14~16题是三道已知一个数的几分之几,求这个数的问题,促使例题的思考方法水平迁移。在六年级(上册)只教学稍复杂的分数乘法问题,另一些分数实际问题则安排在这里教学。
教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位1用乘法,单位1未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。
百分数的应用二教案篇2
一.揭示课题
今天这节课,老师准备与同学们一起应用百分数的知识来解决一些实际问题。(出示课题:百分数的综合应用)
二.基本练习
师:老师想向大家了解一些情况,你们愿意吗?
生:愿意。
师:你的身高是多少?
生1:我的身高是1米58。
生2:我的身高是152厘米。
生3:我的身高是145厘米。
师:你的体重是多少千克?
生1:我的体重是43千克。
生2:我的体重是38.5千克。
师:自己的身高和体重都知道,但你知道自己体内大约有多少千克的血液在流动吗?(生茫然并窃窃私语。)
师:你们称过吗?(生:没有)能称吗?(生:不能)
师:是呀!称体内的血液这不要了大家的命了(众人笑)。所以老师去查了一些资料,终于找到了一个科学研究的结果。(课件出示:人体中血液的重量约占体重的7%)现在能知道了吗?
学生根据自己的体重来计算体内的血液重量。
反馈:
生:我的体内有4.7千克的血液。
师:是怎样计算的?
生:用自己的体重乘以7%。
师:你们都是这样来算的吗?
生:是。
(学生讲述计算过程,教师板书算式。)
生:我的体重是44千克,所以是44×7%。
师:对呀!用这样一条简单的百分数知识就可以解决体内血液的重量问题,其实类似的问题在我们身上还可以找到许多,比如说:12岁左右的少年,头高占自己身高的14.28%。(课件同步出示)看到这里,你能知道什么?
生:能知道自己的头有多高。
师:你想知道自己的头高吗?(生:想)请算一算吧!(学生计算,师巡回。)
反馈:
生:我的身高是155厘米,头高就是155×14、28%=22.134厘米。
生:我的身高是141厘米,头高就是141×14、28%=20、13厘米
师:与上面同学的计算结果比较一下,我们的头高都一样吗?为什么?
生:头高不一样,是因为身高不相同。
师:老师的头高是21.7厘米,你能帮老师算算身高吗?(课件同步出示)
(学生计算,师巡回。)
反馈:
生:老师的身高是21.7÷14、28%=151厘米。
师:都一样吗?(生:一样)噢,老师谢谢你们啦!(个别学生开始举手)你想说什么?
生:不对,这里是12岁左右的少年头高是身高的14.28%,老师是成年人了。
师:讲得有道理,人在各个不同的生长时期,头高与身高的百分比是不相同的,老师忘了告诉大家了(课件出示人在各个生长时期头高与身高的百分比)。33.3%
胎儿的头高约占身高的33.3%
婴儿的的头高约占身高的25%
12岁左右的少年,头高约占自己身高的14.28%
成人的头高约占身高的12.5%
请你选择合适的条件,再为老师算算身高。(学生计算)
生:老师的身高应该是21.7÷12.5%=173.6厘米。
师:大家一样吗?(生:一样)这才差不多,虽然第一次计算身高时选择的条件是错误的,但是思考的方法是(生:正确的)。
:我们用百分数的知识,能解决这些问题,你还知道日常生活中哪些方面也经常用到百分数的知识?
生:商店打折的折扣。
生:银行的存款利率。
生:小麦的发芽率。
生:产品的合格率。
三.巩固深化
师:看样子,百分数的知识作用可不小啊!老师也收集了一些这方面的材料(课件出示)这些问题你们有信心解决吗?(生:能)
如果在解决过程中碰到困难可以同桌讨论,也可以向老师求援,能用多种方法解决那就更好了。
(学生练习,巡回指导。)
反馈讲评:
(1)某班有男生25人,女生20人,男生人数比女生多百分之几?
反馈时提问:为什么除以20,而不除以25呢?还有其它方法吗?
(2)根据会务组统计,本次活动浙江省参加听课的老师约130人,比江西省参加的老师少90%。江西省参加听课的老师有几人?
反馈时提问:你是怎样思考的?
(2)小明家刚买了一套新房,向银行贷款40000元,月利率是0.466%,期限一年,到期时应付利息多少元?
反馈时提问:利息如何算?12从哪里而来?
(4)如右图,练市到南昌的总路程约是985千米,其中练市到杭州约占总路程的10%,老师坐汽车从练市到杭州用了2小时。
照这样计算,从练市到南昌要多少小时?
解法一:985÷(985×10%÷2)=20小时
你是怎样思考的?
解法二:2÷10%=20小时
师:这样简单,你解释一下好吗?
生:路程是全程的10%,在速度不变的情况下,那么从练市到杭州所用的时间应是全部时间的10%。
师:从刚才的练习中可以体会到解决这些问题的方法是多种多样的,那么在解决百分数的问题时,你们一般是怎样来思考的呢?
(学生讨论,同组互说。)
归纳:一般是先找关键句,确定单位“1”的量,再根据具体情况,进行具体地分析。
四.综合练习
1.课件出示:练市小学的基本概况。
练市小学创办于1920年,已有80多年的历史。创办初期只有13位教师,8个班级,而现在已有25个班,占地8400平方米,其中绿化面积占总面积的20%,学校教师数比创办初期增加了400%,现在在校学生1220人,相当于创办初期的488%。
师:根据这些情况,你还能知道一些其它的问题吗?
生:可以知道练市小学现在有多少位教师。
生:可以知道练市小学的绿化面积是多少。
生:可以知道练市小学创办初期有多少学生。
师:请把你最想知道的问题计算出来。
反馈:
师:(指着8400×20%=1680平方米)能说一说你算的是什么吗?
生:我算的是绿化面积有多少平方米。
师:指着“13×(1+400%)=65(人)”你猜一猜他算的是什么?
生:他计算的是现在学校教师的人数。
师:还有其它的吗?
生:(指着25÷18=312.5%)我算的是练市小学现在的班级数相当于原来的百分之几?
师:讲的真不错,从这里我们可以看出练市小学在不断地发展,为了给我们同学更好的学习环境,我校正在新建一座现代化的新校。(出示新校设计效果图)
课件出示:
有62吨砂子准备运往建校工地,甲乙两人都想承运这批砂子。
甲说:我有一辆载重10吨的大卡车,每次运费元。如果这些砂子全部由我运,运费可以打九折。
乙说:我有一辆载重4吨的小卡车,每次运费90元。如果这些砂子全部由我运,运费可以打八五折。
师:根据这样的情况,请你们设计几种不同的运货,并算出总运费。(同桌合作)
生:我们决定全部由甲运:总运费是:62÷10≈7次;7××90%=1260元
生:我们决定全部由乙运:总运费是:62÷4≈16次;90×16×85%=1224元
生:我们决定由甲乙合运:甲运5次,乙运3次,总运费是:5×+3×90=1270元。
师:你怎么会想到由甲运5次,乙运3次呢?
生:这样运可以不运半车的,效率比较高。
师:上面有三种不同的运货,你们最喜欢哪一种?请说明理由。
生:我喜欢第二个,运费比较省。
生:我喜欢第三种,同时合运比较快。
百分数的应用二教案篇3
教学目标
1.使学生了解本金、利息、利率、利息税的含义.
2.理解算理,使学生学会计算定期存款的利息.
3.初步掌握去银行存钱的本领.
教学重点
1.储蓄知识相关概念的建立.
2.一年以上定期存款利息的计算.
教学难点
“年利率”概念的理解.
教学过程
一、谈话导入
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.
二、新授教学
(一)建立相关储蓄知识概念.
1.建立本金、利息、利率、利息税的概念.
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.
(2)教师板书:
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
2.出示一年期存单.
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)
教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.
4.出示国家最新公布的定期存款年利率表.
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.
(3)那什么是年利率呢?
(二)相关计算
张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?
1.帮助张华填写存单.
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结
请你说一说如何计算“利息”?
三、课堂练习
1.小华今年1月1日把积攒的`零用钱500元存入银行,定期一年.准备到期后把利息
捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%
(2)800×11.7%×2
(3)800×(1+11.7%)
(4)800+800×11.7%×2×(1-20%)
3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?
四、巩固提高
(一)填写一张存款单.
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?
五、课堂总结
通过今天的学习,你有什么收获?
六、布置作业
1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?
2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?
3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?
七、板书设计
百分数的应用
本金 利息 利息税 利国利民
利率:利息与本金的比值叫利率.
利息=本金×利率×时间
探究活动
购物方案
活动目的
1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.
2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.
3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.
活动过程
1.教师出示价格表
a套餐原价:16.90元 现价:10.00元
b套餐原价:15.40元 现价:10.00元
c套餐原价:15.00元 现价:10.00元
d套餐原价:15.00元 现价:10.00元
e套餐原价:18.00元 现价:10.00元
f套餐原价:14.40元 现价:10.00元
学生讨论:如果你买,你选哪一套?
2.教师出示价格表
a套餐原价:16.90元 现价:12.00元
b套餐原价:15.40元 现价:10.78元
c套餐原价:15.00元 现价:12.00元
d套餐原价:15.00元 现价:12.00元
e套餐原价:18.00元 现价:13.50元
f套餐原价:14.40元 现价:12.24元
学生讨论:现在买哪一套最合算呢?
3.教师出示价格表
每套18.00元,冰淇淋7.00元.
第一周:每套16.20元;买一个冰淇淋回赠2元券.
第二周:降价20%;买一个冰淇淋回赠2元券.
第三周:买5套以上打七折;买一个冰淇淋回赠2元券.
学生讨论:
(1)你准备在哪一周买
(2)你打算怎么买?
(3)你设计方案的优点是什么?
百分数的应用二教案篇4
一、说教材
教学内容:
利息是安排在小学数学北师大教材第十一册第二单元的第四课时。这部分教材是在学生学习了常用百分率、求一个数的百分之几是多少的应用题的基础上进行教学的,是百分数应用的一种,利率这个百分数对于学生来说较为陌生,也更为专业化,它表示利息和本金的关系,因此要让学生的潜意识中有所转变:利率不难理解,它和我们之前学习过的百分数是一样的。我本堂课的教学目标设定,以使学生理解并掌握利率的意义为主,从而掌握求利息的方法,以及了解利息税知识。同时培养学生的应用意识和实践能力。使学生掌握有关储蓄、纳税的一些知识,同时受到勤俭节约的思想教育。
教学目标:
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。
1、通过阅读资料及预习,使学生了解生活中储蓄的相关知识,培养学生的观察意识,分析能力,同时培养学生在调查预习活动中的收集、提取、整理、归纳信息的能力。
2、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
3、结合储蓄等活动,学会合理理财,逐步养成不乱花钱的好习惯。
重点难点:
1、掌握利息的`计算方法。
2、通过自主探索,了解利息的计算方法。
教具学具:
课前搜集的有关储蓄、利息的信息,多媒体课件。
设计理念:
本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照
“一、二、一”的教学模式,即把教学分为:自学新知(10分钟)、检查释疑(20分钟)、课堂检测(10分钟)三个环节。
二、说学生
1、知识基础。①刚学过的百分数知识.学生总体上掌握得
较好,较牢,计算利息、保险费和税款是百分数应用的一种。所以学生较容易接受。②学生对储蓄、保险、纳税知识了解非常少,应做好课前准备。
2、学生的基础知识掌握情况还可以,同学之间的相互质疑,解疑的能力有一定的水平。但学生在分析信息、处理信息的能力较薄弱,学生从数学的角度提出问题、理解问题和解决问题的能力不强。以个人开展各种活动有些困难,我主要采取小组合作的方式,让学生探索、讨论、实践。
三、说教法
为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。整堂课通过提问式、点拨式、谈话法、分析法以及练习法引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。
四、说学法
根据高年级学生的心理特征和六年级教材的特点,在引导学生探究学习的过程中,抓住立体的已知条件量和未知量,通过对
话的形成入手,抓住教、学具的应用,展开交流、讨论、合作学习等方式,创设情境,唤起学生的注意,通过层层分析、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的含义,来分散教学难点。同时精心设计练习,让学生在整堂课中通过分析法观察法、比较法、练习法及合作学习的方式完成学习过程。教学中还要注重沟通师生的情感因素面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。
教学过程:
情景导入,引入课题
课的开始我很亲切的向学生提出求助:老师有5000元钱暂时不用,放在家里又觉得不太安全,哪位同学帮老师想个办法,如何更好的处理这笔钱?学生建议存入银行。这种以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系。起到了开动思维的作用,使学生乐于参与数学活动。(设计理念:使学生明白储蓄的第一个好处“安全”)同时我接着追问“把钱存入银行有什么好处呢?(设计理念:储蓄的第二个好处“获得利息”)板书课题:利息。
合作交流,自学新知
这是本节课的重点,所以安排了四个层次。
一、阅读老师提供的有关储蓄的资料,理解概念,并完成自学习题。
引导学生“通过阅读,哪位同学愿意给大家介绍一下储蓄的有关知识,同学们可以站起来自由发言,其他同学可做补充”(设计意图:学生通过阅读充分感知储蓄的益处之后,主动进行介绍,在不知不觉中学到了知识,体会到了数学就在我们身边。
课前预习提纲
?一】填空
1、今天我们学习了利息的有关知识。知道存入银行的钱叫做(),取款时银行多支付的钱叫做()。
2、()与()的百分比叫做利率。
3、利息的计算公式是()。
(设计意图:完成了第一个教学目标即:通过阅读资料及预习,使学生了解生活中储蓄的相关知识,培养学生的观察意识,分析能力,同时培养学生在调查预习活动中的收集、提取、整理、归纳信息的能力。
?二】小调查
1、你知道有哪些主要的存款方式吗?
2、你觉得到银行存款有什么好处?
检查释疑
教师出示教学提示卡检查学生课前调查情况
让学生结合具体的例子说出本金、利率以及存单上其他的相关信息。
(设计意图:这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。其次对于新知的处理,完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设思维的空间,探究的空间,交流的空间,注重让学生经历知识的产生过程,即培养学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)
3、交流讨论,了解利息的计算方法
(1)出示银行储蓄利率表,让学生通过比较,让学生得出,存期不同,利率不同,利息的多少与利率有关。
存款年限不同,所对应的利息也不同,这往往是学生容易忽视的地方,采用这种观察比较的方法,引导学生自己发现不同,要比教师反复叮嘱似的灌输印象深刻得多。
(2)让学生按要求计算到期后可得多少利息及到期后取回的钱。学生独立计算,然后通过交流汇报得出利息的计算方法。
设计理念:这是一个自主练习的环节,也是一个深化理解的过程,学生通过计算,解释算是的意义,等活动进一步深刻理解了利率、利息、本金的含义及之间的关系,自主探索出了利息的计算方法。
课堂检测
出示两个难度渐进的有关计算利息的题, 旨运用所学知识解决实际问题,提高学生的实际运用能力。
1、玲玲把300元钱存入银行,整存整取3年,年利率4.14%,到期时,玲玲到期时可得到多少利息?玲玲共可取回多少钱?
2、存入银行(两年后用)算一算他如何存取才能得到最多利息?
(设计理念:学生做学生讲的方式。课堂检测的结果由学生来打分,一来能够加深他们对利息计算公式的记忆,二来能让他们体验当老师的快乐,最后能让他们帮助有错的同学改错)
课堂总结
师:通过这一节课的学习,请同学们说一说你都有哪些收获?在利息的计算时应注意什么问题?
生:我们学习了有关储蓄的知识,知道了本金、利息和利率,以及它们三者之间的关系。特别是学会了求利息的方法:本金×利率×时间=利息。还知道了储蓄的意义。
五、说板书
板书设计:
百分数的应用(四)——利息
利息=本金×利率×时间
百分数的应用二教案篇5
教学内容:
p29、p30 “百分数的应用(四)”
教学目标:
1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
教学重点:
进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。
教学过程:
一、谈话引入。
课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。
师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。
组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。
组2:现在银行可以办各种储蓄卡,如果到外地出差,不用带现金,只带卡就可以了,既方便又安全
组3:我们调查了存款的年利率。
存期(整存整取)
年利率 %
一年 2.25
二年 2.70
三年 3.24
五年 3.60
组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。
师:同学们真了不起,了解了这么多。老师知道同学们在过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?
生:当然是存到银行了。
二、探究思考。
师:是啊,存到银行不但能支援国家建设,到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?
生:我想存三年整存整取,时间长一些利息就会多。
生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。
师:你知道得真多,活期存款的利率低一些。
师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。
(教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)
板书
300 x 2.25% x 1
=6.75 (元)
300 x 3.24% x 3
=29.16 (元)
师:从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。
师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税?
学生汇报
6.75 x 20% = 29.16 x 20% =
师:那有没有不用交利息税的呢?
生:
师:对,只有国债和教育储蓄是不需要交利息税的。
三、练习巩固。
1、小明的爸爸打算把5000元钱存入银行(两年后用)。他如何存取才能得到最多的利息?
2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?
3、把20xx元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,的本金和利息共有多少元?交了多少利息税?
四、课堂总结
通过今天的学习你有什么收获?
课前布置学生分小组到银行调查利率并了解有关储蓄的知识。
激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。
提出“怎样处理这些钱”“存入银行有什么好处”等问题,使学生从中了解储蓄的意义。
学生己有了储蓄的知识基础,对于存款的方式让学生自己讨论,在讨论交流中,学生感受到,需要根据实际情况选择合理的储蓄方式。再引出计算利息的方法。
由于讨论的问题和数据都来自于学生,这样就使计算利息更具有实际意义,学生的学习兴趣和积极性也会大大提高。
拓展学生的思维。综合应用所学的知识解决实际问题。
结合实际对学生进行思想道德教育,珍惜现在的学习机会,支援贫困地区的失学儿童。
百分数的应用二教案篇6
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。
教学重点难点:
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备:
课件。
教学过程:
一、复习旧知,导入新课
1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?
2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)
二、教学过程
活动一:创设情境,引出新知
1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?
2、课件出示情境,引导学生观察
师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:
45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
3、师:根据这两个条件,你能提出什么问题?
生提问,师选择板书。
(1)、冰的体积是原来水的体积的百分之几?
(2)、原来水的体积是冰的体积的.百分之几?
(3)、冰的体积比原来水的体积增加百分之几?
4、在这些问题中,我们能解决哪些问题?
师生共同解决,并将解决的问题擦掉。
活动二:理解“增加百分之几”。
1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?
2、学生用自己的方式理解“增加百分之几”的意思。
3、全班汇报,由口头理解的不清晰,引出线段草图。
4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?
通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。
5、列式计算,数形结合,说出两个列式的含义
6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。
可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。
三、训练巩固
1、根据问句,说出谁和谁比,谁是单位“1”的量。
①女生人数是男生人数的百分之几?
②梨的质量是苹果质量的百分之几?
③降价了百分之几?
④增产了百分之几?
2、消费宝典
电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)
(引导学生先理解“降低百分之几”再列式计算。)
3、建设新农村
选一选:
光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?
(1)、(121-66)÷121
(2)、 66÷121
(3)、 66÷(121-66)
(让学生说出选择的依据。)
四、课堂小结
通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。
百分数的应用二教案篇7
学习内容:课本第8页的例4和“练一练”,练习三的第1~4题。
课堂目标:
1.使学生联系百分数的意义认识折扣的含义,了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”以及与打折有关的其他实际问题,进一步体会有关百分数问题的内在联系,加深对百分数表示的数量关系的理解。
2.使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,体验成功的乐趣,增强学好数学的信心。
教学重点:
认识折扣的含义并能正确列方程解答“已知一个数的百分之几是多少,求这个数”以及与打折有关的其他实际问题。
教学准备:教学光盘及多媒体设备
教学过程:
一、教学例4
1.认识折扣。
谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。
出示教材例4的场景图。让学生说说从图中获取到哪些信息。
提问:你知道“所有图书一律打八折销售”是什么意思吗?
在学生回答的基础上指出:把商品减价出售,通常称做“打折”。打八折就是按原价的80%出售,打“八三折”就是按原价的83%出售。
2.探索解法。
提出例4中的问题:《趣味数学》原价多少元?
启发:图中的小朋友花几元买了一本《趣味数学》?这里的“12元”是《趣味数学》的现价,还是原价?在这道题中,一本书的现价与原价有是什么关系?
追问:“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?
进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?
学生在小组里互相说一说,再在全班交流。教师根据学生的回答板书:
原价×80%=实际售价
提出要求:你会根据这个相等关系列出方程吗?
根据学生的回答,板书。
解:设《趣味数学》的原价是ⅹ元。
ⅹ×80%=12
ⅹ=12÷0.8
ⅹ=15
答:《趣味数学》的原价是15元。
3.引导检验,沟通联系。
启发:算出的结果是不是正确?你会不会对这个结果进行检验?
先让学生独立进行检验,再交流交验方法。
启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。
二、指导完成“练一练”
先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的'相等关系?你又是怎样检验的?
三、巩固练习
1.做练习三第1题。
学生读题后,先要求说说每种商品所打折扣的含义,再让学生各自解答。
学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?
2.做练习三第2题。
先让学生独立解答,再对学生解答的情况适当加以点评。
3.做练习三第3题。
先让学生在小组里互相说一说,再指名口答。
4.做练习三第4题。
先让学生独立解答,再指名说说思考过程。
四、全课
提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?
提出要求:课后抽时间到附近的商场或超市去看一看,收集有关商品打折的信息,并提出一些问题进行解答。
五、布置作业
课内作业:补充习题第4页
板书设计:
折扣问题
原价×折扣=实际售价
解:设《趣味数学》的原价是x元。
x×80%=12
x=12÷0.8
x=15
答:《趣味数学》的原价是15元。
百分数的应用二教案篇8
课题一:利息
教学内容:
教科书第12页及做一做中的题目,练习一的第1、2题。
教学目的:
使学生了解有关利息的初步知识,知道本金、利息、利率的含意,会利用利息的计算公式进行一些有关利息的简单计算。
教具准备:
将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。
教学过程:
一、导入
教师提问:
如果你家中有一些暂时不用的钱,将怎么办?让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:
为什么要把钱存入银行呢?多让几个学生发表意见。
教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。
你们知道利息是怎样计算的吗?
教师:今天我们就来学习一些有关利息的知识。
板书课题:利息
二、新课
出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。
先请学生读题,然后教师再说明:题目中有存定期一年表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是定期年,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。
教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:存入银行的钱叫做本金
存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:取款时银行多付的钱叫做利息
这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:利率就是利息与本金的比值这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。
根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。
按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?
提问:
二年期的定期整存整取的年利率是5.94%是什么意思?(到期取款时每100元可得5.94元的利息。)小丽的本金是300元,到期时她每一年应得利息多少元?(300元的5.94%。)学生口述,教师板书:3005.94%。
二年应得利息多少元?学生口述,教师接着板书:2小丽的存款到期时可以得到的利息是35.64元。
想一想,存款的利息应该怎样计算呢?先让学生说一说,教师再板书:利息=本金利率时间
小丽的存款到期时,她可以取出本金和利息一共多少元?(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。
三、巩固练习
做第2页做一做中的题目和练习一的第2题。先让学生独立做,然后再共同订正。
订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?
四、作业
练习一的第1题。
会计实习心得体会最新模板相关文章:
★ 感恩教育教案8篇